CONGRUENCES BETWEEN MODULAR FORMS, CYCLIC ISOGENIES OF MODULAR ELLIPTIC CURVES, AND INTEGRALITY OF p-ADIC L-FUNCTIONS

SHU-LEUNG TANG

ABSTRACT. Let Γ be a congruence subgroup of type (N_1,N_2) and of level N. We study congruences between weight 2 normalized newforms f and Eisenstein series E on Γ modulo a prime $\mathfrak p$ above a rational prime p. Assume that $p \nmid 6N$, E is a common eigenfunction for all Hecke operators and f is ordinary at $\mathfrak p$. We show that the abelian variety associated to f and the cuspidal subgroup associated to f intersect non-trivially in their f-torsion points. Let f be a modular elliptic curve over f with good ordinary reduction at f. We apply the above result to show that an isogeny of degree divisible by f from the optimal curve f in the f-isogeny class of elliptic curves containing f to f extends to an étale morphism of Néron models over f if f > 7. We use this to show that f-adic distributions associated to the f-adic f-functions of f are f-valued.

Introduction

Let A be a modular elliptic curve of conductor N defined over $\mathbb Q$ and let p>2 be a prime at which A has good ordinary reduction. Let Δ be a positive integer prime to p. In [9], Mazur and Swinnerton-Dyer construct, using modular symbols, an $H_1(A,\mathbb Z)\otimes \mathbb Q_p$ -valued measure $\mu_{A,\Delta}$ on $\mathbb Z_{p,\Delta}^*=\lim_{\longleftarrow}(\mathbb Z/p^n\Delta\mathbb Z)^*$ (inverse limit being with respect to natural maps) associated to A, and define the p-adic L-function of A to be the p-adic Mellin transform of $\mu_{A,\Delta}$ which interpolates the values of the complex L-functions $L(A,\chi,z)$ at z=1 for Dirichlet characters χ of conductor $p^n\Delta$, $n\geq 0$. In the light of Iwasawa theory, one would expect $\mu_{A,\Delta}$ to be $H_1(A,\mathbb Z)\otimes \mathbb Z_p$ -valued. This is known when $\Delta=1$.

Let $\pi: X_0(N) \to A$ be a modular parametrization (i.e. a non-constant \mathbb{Q} -morphism) which sends the cusp ∞ to the origin of A. Let ω_A be a Néron differential on A. Then $\pi^*\omega_A = c(\pi)f(q)dq/q$, where $c(\pi) \in \mathbb{Q}^*$ and f(q)dq/q is a normalized newform on $\Gamma_0(N)$. $c(\pi)$ is called the Manin constant of π and is conjectured by Manin to be ± 1 when A is strong Weil [8]. Stevens in [23] studies parametrizations $\pi: X_1(N) \to A$ (which send the cusp $0 = [1 \]$) to the origin) and refines Manin's conjecture as follows.

Conjecture 0.1. ([23, Conj. I]) For every modular elliptic curve A over \mathbb{Q} , there is a modular parametrization $X_1(N) \to A$ whose Manin constant is ± 1 .

Received by the editors May 10, 1995 and, in revised form, September 21, 1995. 1991 Mathematics Subject Classification. Primary 11G05, 11G18; Secondary 11S40. Key words and phrases. Modular forms, elliptic curves, p-adic L-functions.

In [12], p-adic distributions on $\mathbb{Z}_{p,\Delta}^*$ are constructed more generally for modular forms of weight ≥ 2 . In the case of f arising from A as above, the construction yields an $\mathcal{L}(A)\otimes\mathbb{Q}_p$ -valued measure $\nu_{A,\Delta}$ where $\mathcal{L}(A)$ is the period lattice of A with respect to ω_A (cf. [23, §4]). If $\Delta=1$, $\mu_{A,\Delta}$ and $\nu_{A,\Delta}$ coincide (up to a p-adic unit) under the identification $H_1(A,\mathbb{Z})\cong\mathcal{L}(A)$ but may differ in general (due to the p-adic "multiplier" [12, §14]). It is known ([23, Thms. 1.6, 4.6]) that $c(\pi)\in\mathbb{Z}$ and $c(\pi)\nu_{A,\Delta}$ is $\mathcal{L}(A)\otimes\mathbb{Z}_p$ -valued for any modular parametrization $\pi:X_1(N)\to A$. Thus if Conjecture 0.1 is true, then $\nu_{A,\Delta}$ is $\mathcal{L}(A)\otimes\mathbb{Z}_p$ -valued. We study in this paper the integrality of $\nu_{A,\Delta}$ and prove the following (cf. [23, §4, Conj. IV])

Theorem 0.2. With the above notation and assumptions, $\nu_{A,\Delta}$ is $\mathcal{L}(A) \otimes \mathbb{Z}_p$ -valued for p > 7.

To prove Theorem 0.2, it suffices to show $p \nmid c(\pi)$ for some modular parametrization $\pi: X_1(N) \to A$. Let $\mathcal A$ be the $\mathbb Q$ -isogeny class of elliptic curves over $\mathbb Q$ containing A. Then there are a unique curve (up to $\mathbb Q$ -isomorphism) A_1 in $\mathcal A$ and a modular parametrization $\pi_1: X_1(N) \to A_1$ such that if $\pi: X_1(N) \to A'$ is a modular parametrization of a curve $A' \in \mathcal A$, then there is a $\mathbb Q$ -isogeny $\beta: A_1 \to A'$ such that $\pi = \beta \circ \pi_1$. We call A_1 the optimal curve in $\mathcal A$ and π_1 an optimal parametrization. By a result analogous to [11, Cor. 4.1], $c(\pi_1) \in \mathbb Z[1/2n]^*$ where n is the largest square dividing N. (Mazur proves this for $X_0(N)$ -parametrizations of strong Weil curves, but his method works also for $X_1(N)$ -parametrizations of optimal curves.) In particular, $p \nmid c(\pi_1)$. The next step is to look at $\mathbb Q$ -isogenies between A_1 and A. In this direction, we prove

Theorem 0.3. Suppose p > 7. Let $\beta : A_1 \to A$ be a cyclic \mathbb{Q} -isogeny of degree divisible by p. Then β is étale at p.

Here we say that an isogeny $\alpha: E_1 \to E_2$ of elliptic curves over \mathbb{Q} is étale at p if the morphism $\alpha_{\mathbb{Z}_p}: E_{1/\mathbb{Z}_p} \to E_{2/\mathbb{Z}_p}$ of Néron models over \mathbb{Z}_p is étale. The proof of Theorem 0.3 relies on Theorem 0.4 below, which reflects a general principle in the theory of modular curves that whenever there is a congruence between two modular forms, there should be a fusion module which explains the congruence. Let Γ be a congruence group of type (N_1, N_2) and of level N ([21, 1.1]). Let f (resp. E) be a weight two normalized newform (resp. an Eisenstein series) on Γ . Assume that E is a common eigenfunction for all Hecke operators and that there is a place $\mathfrak P$ of $\mathbb Q$ such that the Fourier coefficients of f and E are congruent mod \mathfrak{P} . We say that \mathfrak{P} is an Eisenstein prime for E and f. Let A_f be the abelian subvariety over \mathbb{Q} of the Jacobian J_{Γ} of the modular curve associated to Γ ([18, Thm. 7.14]) and K_f the field generated over \mathbb{Q} by the Fourier coefficients of f. There is an embedding of K_f into $\operatorname{End}(A_f) \otimes_{\mathbb{Z}} \mathbb{Q}$ (loc. cit.). Let C_E be the cuspidal subgroup of J_{Γ} associated to E([21, 1.8]). Let \mathfrak{p} be the prime of K_f below \mathfrak{P} . We say that f is ordinary at \mathfrak{p} if the p-th Fourier coefficient of f is a unit mod \mathfrak{p} . By considering the q-expansions in characteristic p of $A_f[\mathfrak{p}]$ and $C_E[p]$, we prove

Theorem 0.4. Let \mathfrak{P} be an Eisenstein prime for f and E. Assume that $\mathfrak{P} \nmid 6N$ and f is ordinary at \mathfrak{p} . Then $A_f[\mathfrak{p}] \cap C_E \neq 0$.

Returning to the proof of Theorem 0.3, we let $\beta: A_1 \to A$ be a cyclic isogeny of degree divisible by p. Assuming that the Galois character on the subgroup of order p of ker β is not the trivial character or the Teichmüller character, we show that there is an Eisenstein series E on $\Gamma_1(N)$ arising from the Galois representation on

the p-torsion points of A_1 whose Fourier coefficients are congruent mod \mathfrak{P} to those of f (Prop. 2.6). Theorem 0.4 shows that A_1 and the cuspidal subgroup of the Jacobian of $X_1(N)$ associated to E intersect non-trivially in their p-torsion points. Using the classification theorem of rational cyclic isogenies of elliptic curves over \mathbb{Q} ([11], [7]), we deduce that $p \leq 7$ (§2.3).

We prove Theorems 0.4, 0.3 and 0.2 in Sections 1, 2 and 3 respectively . For a field K, we write \overline{K} for an algebraic closure of K, K_s for the separable closure of K in \overline{K} and G_K for $\operatorname{Gal}(K_s/K)$. Throughout the paper, we fix a place $\mathfrak P$ of $\overline{\mathbb Q}$ above p and identify the residue field of the valuation ring of $\overline{\mathbb Q}$ at $\mathfrak P$ as an algebraic closure $\overline{\mathbb F}_p$ of $\mathbb F_p$. Also fix an embedding of $\overline{\mathbb Q}$ into $\mathbb C_p$ so that $\mathfrak P$ is the place induced by it. For a prime l, D_l will denote a decomposition group in $G_{\mathbb Q}$ for l and I_l its inertia subgroup. For a commutative group scheme G and α an endomorphism of G, $G[\alpha]$ will denote the kernel of α and $G[\alpha^{\infty}] = \bigcup_{n \geq 0} G[\alpha^n]$. If $\mathfrak g$ is a set of endomorphisms of G, then $G[\mathfrak g]$ will denote $\bigcap_{\alpha \in \mathfrak q} G[\alpha]$. When $G = \mathbb G_m$ is the multiplicative group, we write μ_n for $\mathbb G_m[n]$. We shall use the following notation for cusps: if Γ is a congruence subgroup of level N and a, $b \in \mathbb Z$ are such that (a, b, N) = 1, then $\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}_{\Gamma}$ will denote the Γ -equivalence class of the cusp a/b.

Acknowledgments. This work was done while the author was a post-doctoral fellow at McMaster University. Their support is gratefully acknowledged. I also thank the referee for suggestions which led to an improvement of Theorem 0.4.

1. Fusion module of an Eisenstein prime

In this section, we prove Theorem 0.4. Let Γ be a congruence subgroup of type (N_1, N_2) and of level N. Let f (resp. E) be a weight two normalized newform (resp. an Eisenstein series) on Γ . Suppose that E is a common eigenfunction for all Hecke operators. Let a_n ($n \geq 0$) (resp. b_n ($n \geq 0$)) be the Fourier coefficients of f (resp. E). (We take $a_0 = 0$.) Assume that \mathfrak{P} is an Eisenstein prime associated to f and E, i.e. $a_n \equiv b_n \pmod{\mathfrak{P}}$ for all $n \geq 0$. We write $f \equiv E \pmod{\mathfrak{P}}$. Assume further that $\mathfrak{P} \nmid 6N$ and f is ordinary at \mathfrak{p} . We first review some properties of regular differentials on modular curves and their q-expansions (§1.2) and the q-expansions of the p-torsion points of the Jacobian of a curve over $\overline{\mathbb{F}}_p$ (§1.3). We show that the q-expansions in characteristic p of $A_f[\mathfrak{p}]$ and the cuspidal subgroup $C_E[p]$ coincide. This enables us to conclude that $A_f[\mathfrak{p}]$ and C_E intersect non-trivially.

1.1. Modular curves and Hecke operators. Let \mathfrak{H} be the upper half plane and $\mathfrak{H}^* = \mathfrak{H} \cup \mathbb{P}^1(\mathbb{Q})$. The quotient \mathfrak{H}/Γ is an open Riemann surface which can be compactified to a projective algebraic curve $X_{\Gamma/\mathbb{C}} = \mathfrak{H}^*/\Gamma$ over \mathbb{C} by the addition of cusps. By Shimura [18, §6.7], $X_{\Gamma/\mathbb{C}}$ has a canonical model X_{Γ} over \mathbb{Q} . The moduli interpretation of X_{Γ} is that it is the coarse moduli scheme of the functor associating to each \mathbb{Q} -scheme S the S-isomorphism classes of generalized elliptic curves over S with an H-orbit of level N-structures where H is the image of Γ under the natural map $\Gamma \to \mathrm{GL}_2(\mathbb{Z}/N\mathbb{Z})$. Write X(N), $X_0(N)$, $X_1(N)$ for $\Gamma = \Gamma(N)$, $\Gamma_0(N)$, $\Gamma_1(N)$ respectively.

Let T_l $(l \nmid N)$ and U_l (l|N) be the usual Hecke correspondences on X_{Γ} (see for example [18, Chap. 7]). For $m \in (\mathbb{Z}/N\mathbb{Z})^*$, let $\sigma_m \in \mathrm{SL}_2(\mathbb{Z})$ be such that

$$\sigma_m \equiv \left(\begin{array}{cc} * & 0 \\ 0 & m \end{array}\right) \pmod{N}$$

and write $\langle m \rangle$ for the Hecke correspondence corresponding to σ_m . Let J_{Γ} be the Jacobian of X_{Γ} and $\mathbb{T} \subset \operatorname{End}(J_{\Gamma}) \otimes_{\mathbb{Z}} \mathbb{Q}$ the Hecke algebra generated by the images of T_l $(l \nmid N)$, U_l (l | N) and $\langle m \rangle$, $m \in (\mathbb{Z}/N\mathbb{Z})^*$. Denote the images of T_l , U_l and $\langle m \rangle$ in \mathbb{T} by the same symbols. For brevity, we shall sometimes write T_l for U_l when $l \mid N$ below.

1.2. Regular differentials and their q-expansions. Let ζ_N be a primitive N-th root of unity. Let \mathcal{O} be the completion of $\mathbb{Z}[\zeta_N]$ at the prime below \mathfrak{P} , and K the field of fractions of \mathcal{O} . Fix an embedding of K in \mathbb{C} . Let $X_{\Gamma/\mathcal{O}}$ be the normalization of the j-line $\mathbb{P}^1_{/\mathcal{O}}$ in the function field of $Y_{\Gamma/K}$, where the morphism $Y_{\Gamma/K} \to \mathbb{P}^1_{/\mathcal{O}}$ is defined on points by sending an elliptic curve E with level H-structure to the j-invariant of E. Then $X_{\Gamma/\mathcal{O}}$ is smooth. For any ring R over \mathcal{O} , let $\Omega_{/R} = \Omega_{X_{\Gamma/R}}$ be the sheaf of regular differentials with respect to $X_{\Gamma/R} \to \operatorname{Spec} R$ ([5, I 2.1]) and $\Omega_{/R}(\operatorname{cusps}) = \Omega_{X_{\Gamma/R}}(\operatorname{cusps})$ the sheaf which, when restricted to the complement of the cuspidal sections, is the sheaf of regular differentials and whose sections in a neighborhood of the cuspidal sections are meromorphic differentials with at worst simple poles along those sections ([10, II 3]). We consider only rings R which are flat over \mathcal{O} or $\mathcal{O}/p^n\mathcal{O}$ for some n.

Proposition 1.1. ([24, Prop. 6.1], [6, Prop. 5.1]) Let $R \to R'$ be a morphism of rings which are flat over \mathcal{O} or $\mathcal{O}/p^n\mathcal{O}$ for some n. Then

$$H^{0}(X_{\Gamma/R}, \Omega_{/R}) \otimes_{R} R' \cong H^{0}(X_{\Gamma/R'}, \Omega_{/R'}),$$

$$H^{0}(X_{\Gamma/R}, \Omega_{/R}(\text{cusps})) \otimes_{R} R' \cong H^{0}(X_{\Gamma/R'}, \Omega_{/R'}(\text{cusps}))$$

We consider the q-expansions of regular differentials. Since $H^0(X_{\Gamma/R}, \Omega_{/R}) = H^0(X(N)_{/R}, \Omega_{/R})^H$ by [5, VII 3.3], we can restrict ourselves to the case $\Gamma = \Gamma(N)$. Let $\mathrm{Tate}(q)$ be the Tate curve with N-sides over $\mathcal{O}[\![q^{\frac{1}{N}}]\!]$. $\mathrm{Tate}(q)$ with Drinfeld basis $(\zeta_N, q^{\frac{1}{N}})$ defines a point on $X_{\Gamma/\mathcal{O}}$, and the corresponding morphism

$$\tau_{/\mathcal{O}}:\operatorname{Spec}\mathcal{O}[\![q^{\frac{1}{N}}]\!]\to X_{\Gamma/\mathcal{O}}$$

can be identified with the formal completion of $X_{\Gamma/\mathcal{O}}$ along the section corresponding to the cusp ∞ (= $\begin{bmatrix}1\\0\end{bmatrix}$) ([5, VII 2.4]). For any R as above, we then have a morphism

$$\tau_{/R}:\operatorname{Spec} R\llbracket q^{\frac{1}{N}}\rrbracket \to X_{\Gamma/R}.$$

For any $\omega \in H^0(X_{\Gamma/R}, \Omega_{/R})$, we define the q-expansion of ω at ∞ to be the element $\varphi_R(\omega) \in R[\![q^{\frac{1}{N}}]\!]$ such that

$$\tau_{/R}^*\omega = \varphi_R(\omega)dq^{\frac{1}{N}}/q^{\frac{1}{N}}.$$

This defines the *q-expansion morphism* $\varphi_R: H^0(X_{\Gamma/R}, \Omega_{/R}) \to R\llbracket q^{\frac{1}{N}} \rrbracket$. Similarly, there is a *q*-expansion map $\varphi_R: H^0(X_{\Gamma/R}, \Omega_{/R}(\operatorname{cusps})) \to R\llbracket q^{\frac{1}{N}} \rrbracket$. Let $B^0(\mathcal{O})$ (resp. $B(\mathcal{O})$) be the submodule of $\mathcal{O}\llbracket q^{\frac{1}{N}} \rrbracket$ consisting of the *q*-expansions at ∞ of cusp forms (resp. holomorphic modular forms) of weight 2 on Γ with coefficients in \mathcal{O} . For any R as above, let $B^0(R) = B^0(\mathcal{O}) \otimes R$ and $B(R) = B(\mathcal{O}) \otimes R$. One can show, using Prop. 1.1, that $\varphi_R(H^0(X_{\Gamma/R}, \Omega_{/R})) \subset B^0(R)$ ([24, Prop. 6.2]). Similarly, we have $\varphi_R(H^0(X_{\Gamma/R}, \Omega_{/R}(\operatorname{cusps}))) \subset B(R)$. So we have maps

$$(1.1) \varphi_R: H^0(X_{\Gamma/R}, \Omega_{/R}) \longrightarrow B^0(R),$$

$$(1.2) \varphi_R: H^0(X_{\Gamma/R}, \Omega_{/R}(\text{cusps})) \longrightarrow B(R).$$

One can define an action of \mathbb{T} on $H^0(X_{\Gamma/R}, \Omega_{/R}(\text{cusps}))$ using the definition of Hecke correspondences, and one on B(R) by its action on the q-expansions of classical modular forms. With these actions, (1.1) and (1.2) are then \mathbb{T} -morphisms. Furthermore, if $g \in R[\![q^{\frac{1}{N}}]\!]$ with zero constant term is a common eigenvector for $T_l(l \nmid N)$ and $U_l(l \mid N)$ with eigenvalues c_l , then the usual recursive relations ([18, (3.5.12)]) show that g is determined by the c_l up to multiplication by a constant.

1.3. q-expansions of p-torsion points. Let X be a smooth projective curve defined over $\overline{\mathbb{F}}_p$ and let J be its Jacobian. Let Ω^1_X be the canonical sheaf of differentials on X and let \mathcal{C} be the Cartier operator on $H^0(X, \Omega^1_X)$ ([3]). There is a canonical isomorphism (cf. [15, §11, Prop. 10])

(1.3)
$$\delta: J[p] \to H^0(X, \Omega_X^1)^{\mathcal{C}}$$

where $J[p] = \{x \in J(\overline{\mathbb{F}}_p) : px = 0\}$ and $H^0(X, \Omega_X^1)^{\mathcal{C}} = \{\omega \in H^0(X, \Omega_X^1) : \mathcal{C}\omega = \omega\}$. The definition of δ is as follows: if x in the domain is represented by a divisor D on $X_{/\overline{\mathbb{F}}_p}$ such that pD = (g) where (g) is the divisor of g, then $\delta(x) = dg/g$.

Proposition 1.2. ([24, Prop. 6.5], [6, Prop. 5.2]) Let J be the Jacobian of $X = X_{\Gamma/\overline{\mathbb{F}}_p}$ and let $\varphi_{\overline{\mathbb{F}}_p}$ be as in (1.1). Then $\varphi_{\overline{\mathbb{F}}_p} \circ (\delta \otimes 1)$ induces an injection $\varphi : J[p] \otimes_{\mathbb{F}_p} \overline{\mathbb{F}}_p \hookrightarrow B^0(\overline{\mathbb{F}}_p)$ such that $\varphi \circ T_n^* = T_n \circ \varphi$ for all $n \geq 1$ where T_n is the n-th Hecke operator and T_n^* is the dual of the endomorphism of J which T_n induces by Pic functoriality.

We call φ in Proposition 1.2 the q-expansion map of the p-torsion points of J. Let A_f be the abelian subvariety over $\mathbb Q$ of the Jacobian J_{Γ} of X_{Γ} associated to f ([18, Thm. 7.14]). Let K_f be the field generated over $\mathbb Q$ by the a_n and ι the embedding $K_f \hookrightarrow \operatorname{End}(J_{\Gamma}) \otimes_{\mathbb Z} \mathbb Q$ from the construction of A_f (loc. cit.). Let $\mathfrak p$ be the prime of K_f below $\mathfrak P$.

Proposition 1.3. Assume that $\mathfrak{p} \nmid N$ and f is ordinary at \mathfrak{p} . Then the image of $A_f[\mathfrak{p}]_{/\mathbb{F}_p}(\overline{\mathbb{F}}_p) \otimes_{\mathbb{F}_p} \overline{\mathbb{F}}_p$ under φ is the $\overline{\mathbb{F}}_p$ -module generated by the reduction \overline{f} of f(q) in $B^0(\overline{\mathbb{F}}_p)$.

Proof. By [18, Thm. 7.14], A_f is stable under subrings of $\operatorname{End}_{\mathbb{Q}}(J_{\Gamma}) = \operatorname{End}(J_{\Gamma}) \otimes_{\mathbb{Z}} \mathbb{Q}$ induced by the Hecke correspondences T_n via Albanese functoriality and Pic functoriality which are related as follows. The endomorphism of J_{Γ} which T_n induces by Albanese functoriality is the endomorphism denoted ξ_n in [18, Chap. 7]. Its dual is the endomorphism of J_{Γ} which T_n induces by Pic functoriality. (For more details, see [14, p. 444].) By [18, Thm. 7.14(b)], $\xi_n x = \iota(a_n) x$ for all $x \in A_f$ and all n. Since J_{Γ} has good reduction at p, the morphism $A_{f/\mathbb{Z}_p} \to J_{\Gamma/\mathbb{Z}_p}$ is a closed immersion ([11, Prop. 1.2]), hence $A_f[\mathfrak{p}]_{/\mathbb{F}_p} \hookrightarrow J_{\Gamma}[p]_{/\mathbb{F}_p}$. Since f is ordinary at \mathfrak{p} , $A_f[\mathfrak{p}]_{/\mathbb{F}_p}(\overline{\mathbb{F}}_p)$ is a one-dimensional vector space over the residue field of \mathfrak{p} (cf. [25, Thm. 2.2]). The action of $\iota(a_n)$ on $A_f[\mathfrak{p}]_{/\mathbb{F}_p}(\overline{\mathbb{F}}_p)$ is given by multiplication by a_n mod \mathfrak{p} . For any x in $A_f[\mathfrak{p}]_{/\mathbb{F}_p}(\overline{\mathbb{F}}_p)$ and $n \geq 1$, it follows from Prop. 1.2 and the above discussion that

$$T_n\varphi(x\otimes 1) = \varphi(T_n^*x\otimes 1) = \varphi(\iota(a_n)x\otimes 1) = a_n\varphi(x\otimes 1).$$

Now \overline{f} is a common eigenvector for all T_n with eigenvalues $a_n \mod \mathfrak{p}$. Thus $\varphi(x \otimes 1)$, $\overline{f} \in B^0(\overline{\mathbb{F}}_p)$ are two common eigenvectors of T_n for all n with the same eigenvalues. (Note that $B^0(\overline{\mathbb{F}}_p) \subset q\overline{\mathbb{F}}_p[\![q]\!]$.) So $\varphi(x \otimes 1) = c\overline{f}$ for some $c \in \overline{\mathbb{F}}_p^*$. This proves the proposition.

Remark 1.4. Let $\sigma: K_f \hookrightarrow \mathbb{C}$ be an embedding. Let f^{σ} be the cusp form obtained by applying σ to the coefficients of f (cf. [18, Thm. 7.14]), A_f^{σ} the abelian subvariety of J_{Γ} associated to f^{σ} and \mathfrak{p}^{σ} the σ -conjugate of \mathfrak{p} . Then a_p^{σ} is a unit mod \mathfrak{p}^{σ} , so f^{σ} is ordinary at \mathfrak{p}^{σ} . If σ extends to an element in the decomposition group $D_{\mathfrak{P}}$ for \mathfrak{P} (we view K_f as a subfield of $\overline{\mathbb{Q}}$), then the same arguments as in Proposition 1.3 show that $\varphi\left(A_f^{\sigma}[\mathfrak{p}^{\sigma}]_{/\mathbb{F}_p}(\overline{\mathbb{F}}_p)\otimes\overline{\mathbb{F}}_p\right)=\overline{\mathbb{F}}_p\cdot\overline{f^{\sigma}}$.

1.4. Cuspidal subgroups associated to Eisenstein series. We recall some results in [21] and [22] which we need below (Props. 1.5, 1.6 and 1.7). Let \mathcal{E}_{Γ} be the space of weight 2 Eisenstein series on Γ . For any $E \in \mathcal{E}_{\Gamma}$, let ω_E be the differential form on \mathfrak{H}/Γ whose pull-back to \mathfrak{H} is E(z)dz. Let $\mathcal{P}(E)$ be the image of

$$H_1(\mathfrak{H}/\Gamma,\mathbb{Z}) \to \mathbb{C}, \qquad \gamma \mapsto \int_{\gamma} \omega_E.$$

For any \mathbb{Z} -module $M \subset \mathbb{C}$, let $\mathcal{E}_{\Gamma}(M) = \{E \in \mathcal{E}_{\Gamma} : \mathcal{P}(E) \subset M\}$. We then have

Proposition 1.5. ([22, Prop. 1.1(a)]) For any \mathbb{Z} -module $M \subset \mathbb{C}$, the natural map $\mathcal{E}_{\Gamma}(\mathbb{Z}) \otimes_{\mathbb{Z}} M \to \mathcal{E}_{\Gamma}(M)$ is an isomorphism.

In [21, §1.8], Stevens showed how one can associate to an arbitrary $E \in \mathcal{E}_{\Gamma}$ a subgroup C_E of the cuspidal group C_{Γ} of J_{Γ} . The construction of C_E is as follows. Let $\mathbf{cusps} = \mathbf{cusps}(\Gamma)$ denote the set of cusps on X_{Γ} and $\mathrm{Div}^0(\mathbf{cusps})$ the group of divisors of degree zero supported on the cusps. For any \mathbb{Z} -module M, define $\mathrm{Div}^0(\mathbf{cusps}; M) = \mathrm{Div}^0(\mathbf{cusps}) \otimes_{\mathbb{Z}} M$. Let

$$\delta_{\Gamma}(E) = \sum_{x \in \mathbf{cusps}} r_x(E) \cdot x \in \mathrm{Div}^0(\mathbf{cusps}; \mathbb{C})$$

where $r_x(E) = 2\pi i \operatorname{res}_x(\omega_E)$ and $\operatorname{res}_x(\omega_E)$ is the residue of ω_E at the cusp x. We note that by [22, Thm 1.3(a)],

$$(1.4) r_{\left[\begin{smallmatrix} r \\ s \end{smallmatrix} \right]}(E) = e(\left[\begin{smallmatrix} r \\ s \end{smallmatrix} \right]) \cdot a_0(E|\gamma_{\left[\begin{smallmatrix} r \\ s \end{smallmatrix} \right]})$$

where $e([r]_s]$ is the ramification index of $[r]_s$ over X(1), $\gamma_{[r]_s]} \in \operatorname{SL}_2(\mathbb{Z})$ is such that $\gamma_{[s]_s} \cdot i\infty$ represents $[r]_s$ and $a_0(E|\gamma_{[s]_s})$ is the constant term of the Fourier expansion of $E|\gamma_{[s]_s}$. Let $\mathcal{R}(E)$ be the \mathbb{Z} -submodule of \mathbb{C} generated by the coefficients of $\delta_{\Gamma}(E)$ and let

$$\mathcal{R}(E)^* = \{ \eta \in \operatorname{Hom}_{\mathbb{Q}}(\mathcal{R}(E) \otimes_{\mathbb{Z}} \mathbb{Q}, \mathbb{Q}) : \eta(\mathcal{R}(E)) \subset \mathbb{Z} \}.$$

The subgroup C_E of C_{Γ} associated to E is by definition the image of the composition

(1.5)
$$\begin{array}{ccc} \mathcal{R}(E)^* & \longrightarrow & \mathrm{Div}^0(\mathbf{cusps}) & \stackrel{\theta}{\longrightarrow} & C_{\Gamma}, \\ \eta & \longmapsto & \eta(\delta_{\Gamma}(E)), \end{array}$$

where θ sends a divisor to its divisor class. Note that since $r_x(E)$ is the integral of ω_E along some cycle around x, $\mathcal{R}(E) \subset \mathcal{P}(E)$. Let $A_E = \mathcal{P}(E)/\mathcal{R}(E)$.

Proposition 1.6. ([22, Thm. 1.2(a)]) For any $E \in \mathcal{E}_{\Gamma}$, there is a perfect duality $C_E \times A_E \to \mathbb{Q}/\mathbb{Z}$.

Suppose $E \in \mathcal{E}_{\Gamma}$ is a common eigenfunction for all T_l and $\langle l \rangle$, $l \nmid N$. Then there are Dirichlet characters ϵ_1 and ϵ_2 modulo N such that $E|T_l = (\epsilon_1(l) + l\epsilon_2(l))E$ for each prime $l \nmid N$ ([21, 3.2.2, (3.2.3)]). We say that E has signature ϵ_1 , ϵ_2 . Let $\mathbb{Z}[\epsilon_1, \epsilon_2]$ (resp. $\mathbb{Q}[\epsilon_1, \epsilon_2]$) be the ring generated by the values of ϵ_1 and ϵ_2 over \mathbb{Z} (resp. \mathbb{Q}). By [21, 3.2.1, 3.2.2], $\mathcal{P}(E)$ and $\mathcal{R}(E)$ are fractional ideals of

 $\mathbb{Q}[\epsilon_1, \epsilon_2]$. Let $\mathfrak{o} = \mathbb{Z}[1/2, \epsilon_1, \epsilon_2]$, $\mathfrak{a} = \mathfrak{o} + \mathfrak{o} \mathcal{R}(E)$ and \mathfrak{b} the \mathfrak{o} -module generated by $\{1, B_{1,\epsilon_1^{-1}}, B_{1,\epsilon_2}, S(\epsilon_1)B_{2,\epsilon_2}, S(\epsilon_2)B_{2,\epsilon_1^{-1}}\}$, where for $i = 1, 2, B_{i,-}$ are the generalized Bernoulli numbers and

$$S(\epsilon_i) = \begin{cases} \phi(N_i) & \text{if } \epsilon_i = 1, \\ 0 & \text{otherwise,} \end{cases}$$

and ϕ is the Euler function.

Proposition 1.7. ([21, Thm. 3.6.1]) Let $E \in \mathcal{E}_{\Gamma}$ have signature ϵ_1 , ϵ_2 . Then $\mathfrak{a} \subset \mathfrak{o} \mathcal{P}(E) \subset \mathfrak{b}$.

We next give a set of generators of the space over \mathbb{Q} of weight 2 Eisenstein series E of level N with $\mathcal{R}(E) \subset \mathbb{Q}$. For fractional ideals \mathfrak{a}_1 and \mathfrak{a}_2 of \mathbb{Q} and $a_1, a_2 \in \mathbb{Q}$, define

(1.6)
$$E(z,s) = E(z,s; a_1, a_2; \mathfrak{a}_1, \mathfrak{a}_2)$$
$$= -N(\mathfrak{a}_2)(2\pi)^{-2} \sum_{(m_1, m_2)} (m_1 z + m_2)^{-2} |m_1 z + m_2|^{-2s}$$

for $z \in \mathfrak{H}$, $s \in \mathbb{C}$ with Re s > 2, where the sum is over all pairs $(m_1, m_2) \in \mathbb{Q}^2 - (0, 0)$ such that $m_i \equiv a_i \pmod{\mathfrak{a}_i}$, i = 1, 2. For fixed z, E(z, s) may be continued analytically to a meromorphic function in the s-plane which is holomorphic at s = 0 (cf. [19, §3]). Define

(1.7)
$$E(z) = E(z; a_1, a_2; \mathfrak{a}_1, \mathfrak{a}_2) = E(z, 0; a_1, a_2; \mathfrak{a}_1, \mathfrak{a}_2).$$

The Fourier expansion of E(z) at ∞ is given by

(1.8)

$$-\delta(a_1,\mathfrak{a}_1)(2\pi)^{-2}N(\mathfrak{a}_2)\sum_{0\neq d\equiv a_2\pmod{\mathfrak{a}_2}}|d|^{-2}+\sum_{c\equiv a_1\pmod{\mathfrak{a}_1}}\sum_{b\in\mathfrak{a}_2^{-1}}|b|e^{2\pi i(bcz+ba_2)}$$

where $\delta(a_1, \mathfrak{a}_1) = 1$ or 0 according as $a_1 \in \mathfrak{a}_1$ or not (cf. [19, (3.6)]). For any $(x, y) \in (N^{-1}\mathbb{Z}/\mathbb{Z})^2$, let

$$\phi_{(x,y)}(z) = N^{-2} \sum_{(a_1,a_2) \in (N^{-1}\mathbb{Z}/\mathbb{Z})^2} e^{2\pi i (a_2 x_1 - a_1 x_2)} E(z; a_1, a_2; \mathbb{Z}, \mathbb{Z}).$$

By Hecke (cf. [21, pp. 59-60]), $\{\phi_{(x,y)}: (x,y) \in (N^{-1}\mathbb{Z}/\mathbb{Z})^2 - (0,0)\}$ spans the space of weight 2 Eisenstein series E of level N with $\mathcal{R}(E) \subset \mathbb{Q}$ over \mathbb{Q} . Another fact we need is that if U_{Γ} is the group of meromorphic functions on $X_{\Gamma/\mathbb{C}}$ whose divisors are supported on the cusps, then logarithmic differentiation gives an isomorphism

(1.9)
$$U_{\Gamma}/\mathbb{C}^* \xrightarrow{\sim} \mathcal{E}_{\Gamma}(\mathbb{Z}), \qquad g \mapsto \frac{1}{2\pi i} \frac{g'(z)}{g(z)},$$

and if $E(z) = (2\pi i)^{-1} g'(z)/g(z)$, then $\delta_{\Gamma}(E) = (g)$ (cf. [22, §1]).

Lemma 1.8. For any $E \in \mathcal{E}_{\Gamma}(\mathbb{Z})$, the Fourier coefficients of E at each cusp are in $(12N^2)^{-1}\mathbb{Z}$.

Proof. By (1.9) and a theorem of Kubert (cf. [22, §3]), 2E is a \mathbb{Z} -linear combination of the $\phi_{(x,y)}$ with $(x,y) \in (N^{-1}\mathbb{Z}/\mathbb{Z})^2 - (0,0)$. For any $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$, we have $\phi_{(x,y)}|\gamma = \phi_{(x,y)|\gamma}$, where $(x,y)|\gamma = (ax+cy,bx+dy)$ (cf. [21, 2.4.1(a)]). From [21, 2.4.2(a)], we see that the Fourier coefficients of $\phi_{(x,y)}$, $(x,y) \in (N^{-1}\mathbb{Z}/\mathbb{Z})^2 - (0,0)$, at ∞ are in $(12N^2)^{-1}\mathbb{Z}$.

Suppose now E is a common eigenfunction for T_l for all l and $\langle l \rangle$, $l \nmid N$, such that \mathfrak{P} is an Eisenstein prime associated to f and E as at the beginning of $\S 1$.

Proposition 1.9. Assume that $\mathfrak{p} \nmid 6N$ and f is ordinary at \mathfrak{p} . Then p divides the order of C_E .

Proof. Let $\mathfrak{o}_1 = \mathbb{Z}[\epsilon'_0, \epsilon_0 \chi^{-1}]$ and $\mathfrak{o} = \mathfrak{o}_1[1/2]$. By Prop. 1.7, $N \cdot \mathcal{P}(E) \subset \mathfrak{o}$, so $E \in \mathcal{E}_{\Gamma}(N^{-1}\mathfrak{o})$. By Prop. 1.5, there exist $\lambda_i \in N^{-1}\mathfrak{o}$, $E_i \in \mathcal{E}_{\Gamma}(\mathbb{Z})$ such that $E = \sum_i \lambda_i E_i$. Since $\mathfrak{b} \subset N^{-1}\mathfrak{o}$, Prop. 1.7 shows that the non-integral part of $\mathfrak{o}\mathcal{P}(E)$ is prime to p. (By the integral (resp. non-integral) part of a fractional ideal, we mean the product of the factors in its prime decomposition which occur to a positive (resp. negative) exponent.) Since $\mathfrak{o}\mathcal{R}(E) \subset \mathfrak{o}\mathcal{P}(E)$, the non-integral part of $\mathfrak{o}\mathcal{R}(E)$ is prime to p also. We suppose $p \nmid \#C_E$ and derive a contradiction. By Prop. 1.6, $p \nmid \#(\mathcal{P}(E)/\mathcal{R}(E))$, so $p \nmid \#(\mathfrak{o}\mathcal{P}(E)/\mathfrak{o}\mathcal{R}(E))$. Since $\mathfrak{a} \subset \mathfrak{o}\mathcal{P}(E)$ by Prop. 1.7, $p \nmid \#(\mathfrak{o} + \mathfrak{o}\mathcal{R}(E))/\mathfrak{o}\mathcal{R}(E) = \#\mathfrak{o}/(\mathfrak{o} \cap \mathfrak{o}\mathcal{R}(E))$. This implies that the integral part of $\mathfrak{o}\mathcal{R}(E)$ is prime to p. Hence $\mathfrak{o}\mathcal{R}(E)$ is prime to p.

Let $\wp = \mathfrak{P} \cap \mathfrak{o}_1$ and let $\overline{\eta}_0$ be the composite homomorphism $\mathfrak{o}_1 \to \mathfrak{o}_1/\wp \overset{\mathrm{tr}}{\to} \mathbb{F}_p$ where tr is the trace map from $\mathbb{F} := \mathfrak{o}_1/\wp$ to \mathbb{F}_p . Since \mathfrak{o}_1 is projective over \mathbb{Z} , we can lift $\overline{\eta}_0$ to a surjective homomorphism $\eta_0 : \mathfrak{o}_1 \to \mathbb{Z}$. Extend η_0 \mathbb{Q} -linearly to a map $\mathcal{R}(E) \otimes \mathbb{Q} \to \mathbb{Q}$, denoted η_0 again. Since $\mathcal{R}(E)$ is prime to p, there exists $a \in \mathbb{Z}$, (a,p)=1, such that $a\mathcal{R}(E) \subset \mathfrak{o}_1$. Since $a\mathcal{R}(E)$ is prime to p, $\eta_0(a\mathcal{R}(E))=m\mathbb{Z}$ for some $m \in \mathbb{Z}$ prime to p. Let $\eta = \frac{a}{m}\eta_0$. Then $\eta \in \mathcal{R}(E)^*$ satisfies $\eta(\mathcal{R}(E))=\mathbb{Z}$, $\eta(\mathfrak{o}) = \frac{a}{m}\mathbb{Z}[1/2]$ and $\eta(\wp) \subset \frac{p}{m}\mathbb{Z}$. So $\eta(N^{-1}\mathfrak{o}) = \frac{a}{mN}\mathbb{Z}[1/2]$, and we can choose $n \in \mathbb{Z}$, $p \nmid n$, such that $n_i = n\eta(\lambda_i) \in \mathbb{Z}$ for all i. Let

$$\eta(E) = \sum_{i} \eta(\lambda_i) E_i.$$

Then

$$\eta(E)(q) = \sum_{i} \eta(\lambda_i) E_i(q) = \eta(\sum_{i} \lambda_i E_i(q)) = \eta(E(q)),$$

where $\eta(E(q))$ is the q-series obtained by applying η to the coefficients of E(q). Since $f \equiv E \pmod{\mathfrak{P}}$,

(1.10)
$$\eta(E)(q) \equiv \operatorname{Tr}_{\mathbb{F}/\mathbb{F}_p}(E(q)) \equiv \operatorname{Tr}_{\mathbb{F}/\mathbb{F}_p}(f(q)) \pmod{p\mathbb{Z}_{(p)}},$$

where $\operatorname{Tr}_{\mathbb{F}/\mathbb{F}_p}(E(q))$ is the q-series obtained by reducing the coefficients of E(q) mod \wp and taking the trace from \mathbb{F} to \mathbb{F}_p , and similarly for $\operatorname{Tr}_{\mathbb{F}/\mathbb{F}_p}(f(q))$, and $\mathbb{Z}_{(p)}$ is the localization of \mathbb{Z} at p. By (1.9), there exist $g_i \in U_\Gamma$ such that $(2\pi i)^{-1}g_i'(z)/g_i(z) = E_i(z)$ for all i. Let $g = \prod_i g_i^{n_i}$ and $\omega = dg/g$. Then $n\eta(E)(q)$ is the q-expansion of ω at ∞ and $(g) = \delta_\Gamma(n\eta(E))$. In particular, g is non-constant. Since $\eta(E) = \sum_i \eta(\lambda_i) E_i$ with $E_i \in \mathcal{E}_\Gamma(\mathbb{Z})$ and $\eta(\lambda_i) \in \mathbb{Z}_{(p)}$ for all i, Lemma 1.8 gives that $\eta(E)$ has p-integral Fourier coefficients at each cusp for $p \nmid 6N$. It follows from [5, VII 3.9(ii)] that $\eta(E)$ is a modular form with coefficients in \mathcal{O} . (Recall \mathcal{O} was the completion of $\mathbb{Z}[\zeta_N]$ at the prime below \mathfrak{P} .) Hence ω arises by extension of scalars to \mathbb{C} from an element (denoted ω again) in $H^0(X_1(N)_{/\mathcal{O}}, \Omega_{/\mathcal{O}}(\text{cusps}))$ with $\varphi_{\mathcal{O}}(\omega) = n\eta(E)(q)$.

Write X for X_{Γ} . Let $\mathcal{O}^*(\text{cusps})$ denote the sheaf on $X_{/\mathcal{O}}$ which when restricted to the complement of the cuspidal divisors is the sheaf of invertible elements of \mathcal{O}_X and whose sections in a neighborhood of the cuspidal divisors consist of functions with divisors supported on those divisors. We see from the exact sequence

$$0 \to \mathcal{O}^* \to H^0(X_{/\mathcal{O}}, \mathcal{O}^*(\text{cusps})) \xrightarrow{d \log} H^0(X_{/\mathcal{O}}, \Omega_{/\mathcal{O}}(\text{cusps}))$$

that g comes from a function (denoted g again) in $H^0(X_{/\mathcal{O}}, \mathcal{O}^*(\text{cusps}))$ up to an element in \mathcal{O}^* . Let g_0 be the function on $X_{/\overline{\mathbb{F}}_p}$ obtained from g by the base change $\operatorname{Spec}(\overline{\mathbb{F}}_p) \to \operatorname{Spec}(\mathcal{O})$. Then g_0 is a non-constant function. Since $X_{/\mathcal{O}}$ is smooth over $\operatorname{Spec}(\mathcal{O})$, $(g_0) = \delta_{\Gamma}(n\eta(E))_{/\overline{\mathbb{F}}_p}$ by [17, Thm. 20], where $\delta_{\Gamma}(n\eta(E))_{/\overline{\mathbb{F}}_p}$ is the pull-back of $\delta_{\Gamma}(n\eta(E))$ to $X_{/\overline{\mathbb{F}}_p}$. (The cuspidal sections of $X_{/\mathbb{Z}[1/N,\zeta_N]}$ are all disjoint over $\operatorname{Spec}(\mathbb{Z}[1/N,\zeta_N])$, cf. [5, VII §2].) Let $\omega_{/\overline{\mathbb{F}}_p}$ be the image of ω in $H^0(X_{/\overline{\mathbb{F}}_p},\Omega_{/\overline{\mathbb{F}}_p}(\text{cusps}))$. By (1.10), $\varphi_{\overline{\mathbb{F}}_p}(\omega_{/\overline{\mathbb{F}}_p}) = n \cdot \operatorname{Tr}_{\mathbb{F}/\mathbb{F}_p}(f(q))$. For each $\tau \in \operatorname{Gal}(\mathbb{F}/\mathbb{F}_p)$, fix a lift σ_{τ} of τ in the decomposition group $D_{\mathfrak{P}}$ of $G_{\mathbb{Q}}$ for \mathfrak{P} , and let $x_{\tau} \otimes c_{\tau} \in A_f^{\sigma_{\tau}}[\mathfrak{p}^{\sigma_{\tau}}]_{/\mathbb{F}_p}(\overline{\mathbb{F}}_p) \otimes \overline{\mathbb{F}}_p$ be such that $\varphi(x_{\tau} \otimes c_{\tau}) = \overline{f^{\sigma_{\tau}}}$ (cf. Prop. 1.3, Remark 1.4). Then

$$\varphi_{\overline{\mathbb{F}}_p}(\omega_{/\overline{\mathbb{F}}_p}) = n \sum_{\tau} \overline{f^{\sigma_{\tau}}} = n \cdot \varphi\left(\sum_{\tau} x_{\tau} \otimes c_{\tau}\right) \in \varphi\left(J_{\Gamma}[p]_{/\mathbb{F}_p}(\overline{\mathbb{F}}_p) \otimes \overline{\mathbb{F}}_p\right)$$

and so $\omega_{/\mathbb{F}_p} \in H^0(X_{/\mathbb{F}_p}, \Omega_X^1)^{\mathcal{C}} \otimes \overline{\mathbb{F}}_p$. Since $\omega_{/\overline{\mathbb{F}}_p}$ is of the form dg_0/g_0 , $\omega_{/\overline{\mathbb{F}}_p} \in H^0(X_{/\overline{\mathbb{F}}_p}, \Omega_X^1)$ by [3, Thm. 2]. Hence there exists $x \in A_f[p]_{/\mathbb{F}_p}(\overline{\mathbb{F}}_p)$ such that $\delta(x) = \omega_{/\overline{\mathbb{F}}_p}$ by (1.3). If x is represented by a divisor D on $X_{/\overline{\mathbb{F}}_p}$, then $pnD \equiv (g_0) \pmod{p \mathrm{Div}^0(X_{/\overline{\mathbb{F}}_p})}$, where $\mathrm{Div}^0(X_{/\overline{\mathbb{F}}_p})$ is the group of divisors of degree 0 on $X_{/\overline{\mathbb{F}}_p}$. Since $p \nmid n$ and $\delta_{\Gamma}(n\eta(E)) = n\delta_{\Gamma}(\eta(E))$, $pD \equiv \delta_{\Gamma}(\eta(E))_{/\overline{\mathbb{F}}_p} \pmod{p \mathrm{Div}^0(X_{/\overline{\mathbb{F}}_p})}$. Hence the coefficients of $\delta_{\Gamma}(\eta(E))_{/\overline{\mathbb{F}}_p}$ are all divisible by p. But this contradicts the fact that $\eta(\mathcal{R}(E)) = \mathbb{Z}$. Hence $p \mid \#C_E$. This proves Proposition 1.9.

Let $J_{\Gamma/\mathbb{Z}}$ be the Néron model of $J_{\Gamma/\mathbb{Q}}$. Let $C_{\Gamma/\mathbb{Z}}$ (resp. $C_{E/\mathbb{Z}}$) be the scheme-theoretic closure of C_{Γ} (resp. C_{E}) in $J_{\Gamma/\mathbb{Z}}$.

Corollary 1.10. With notation as above, $C_E[p]_{/\mathbb{F}_p}(\overline{\mathbb{F}}_p) \neq 0$.

Proof. Since the cusps of $X_1(N)$ are rational over $\mathbb{Q}(\zeta_N)$ and $p \nmid N$, C_E is unramified at p. Thus C_{E/\mathbb{Z}_p} is a Néron model of C_{E/\mathbb{Q}_p} ([1, 7.1, Cor. 6]). By Prop. 1.9, there exists $x \in C_{E/\mathbb{Z}_p}(K)$ of exact order p, where K is the field of fractions of \mathcal{O} . Let $\tilde{x} \in C_{E/\mathbb{Z}_p}(\mathcal{O})$ be the \mathcal{O} -valued point corresponding to x. Since $C_E[p]_{/\mathbb{Z}_p}$ is finite flat, the specialization lemma in [11, §1] shows that the specialization of \tilde{x} to the special fiber has order p, so $C_E[p]_{/\mathbb{F}_p}(\overline{\mathbb{F}_p}) \neq 0$.

Next we determine the image of $C_E[p]_{/\mathbb{F}_p}(\overline{\mathbb{F}}_p)$ under φ .

Lemma 1.11. For any prime l and any $E \in \mathcal{E}_{\Gamma}$, we have

$$T_l^*(\delta_{\Gamma}(E)) = \delta_{\Gamma}(E|T_l)$$

where T_1^* acts on $\delta_{\Gamma}(E)$ via its action on the cusps.

Proof. Let $\pi: X(N) \to X_{\Gamma}$ be the natural projection. The induced map

$$\pi^*: \mathrm{Div}^0(\mathbf{cusps}(\Gamma)) \longrightarrow \mathrm{Div}^0(\mathbf{cusps}(\Gamma(N)))$$

is injective. It is easy to check that π^* commutes with the actions of T_l^* . Thus it is enough to prove the lemma with $\Gamma = \Gamma(N)$. As $\{\phi_{(x,y)} : (x,y) \in (N^{-1}\mathbb{Z}/\mathbb{Z})^2 - (0,0)\}$ spans the space of weight 2 Eisenstein series E of level N with $\mathcal{R}(E) \subset \mathbb{Q}$ over \mathbb{Q} , it suffices by Prop. 1.5 to prove the lemma for $E = \phi_{(x,y)}$, $(x,y) \in (N^{-1}\mathbb{Z}/\mathbb{Z})^2 - (0,0)$, and all primes l. For $l \nmid N$, the lemma follows from [21, 1.3.2, 2.4.7, 3.2.1].

Suppose now l|N. We have the double coset decomposition:

$$\Gamma\left(\begin{array}{cc} l & 0 \\ 0 & 1 \end{array}\right)\Gamma=\bigcup_{k=0}^{l-1}\left(\begin{array}{cc} l & 0 \\ Nk & 1 \end{array}\right)\Gamma.$$

So

$$T_{l}^{*}\delta_{\Gamma}(\phi_{(x,y)}) = \sum_{\substack{[s] \\ s \in \mathbf{cusps}}} r_{[s]}(\phi_{(x,y)}) \cdot \sum_{k=0}^{l-1} \begin{bmatrix} lr \\ Nkr + s \end{bmatrix}$$

$$= \sum_{\substack{[s] \\ s \in \mathbb{N}}} \left(\sum_{s} r_{[s']}(\phi_{(x,y)}) \right) {s \choose s}$$

$$= \sum_{\substack{[s] \\ s \in \mathbb{N}}} \sum_{k=0}^{l-1} r_{[s']}(\phi_{(x,y)}) {s \choose s},$$

$$(1.11)$$

where the unindexed sum is over all $\begin{bmatrix} r' \\ s' \end{bmatrix} \in \mathbf{cusps} = \mathbf{cusps}(\Gamma(N))$ such that $\begin{bmatrix} lr' \\ Nkr'+s' \end{bmatrix} = \begin{bmatrix} r \\ s \end{bmatrix}$ for some $0 \le k \le l-1$. Let $S = \{\begin{bmatrix} r \\ s \end{bmatrix} \in \mathbf{cusps} : l \nmid r \}$ and $S' = \mathbf{cusps} - S$. We split the sum over $\begin{bmatrix} r \\ s \end{bmatrix}$ in (1.11) into two sums Σ_1 and Σ_2 over S and S' respectively. By [21, Props. 2.4.1(a), 2.4.2(a)], $a_0(\phi_{(x,y)}|\gamma_{\lceil s \rceil}) = \frac{1}{2}B_2(rx+sy)$, where $B_2(t)$ is the second Bernoulli function. We remark that $B_2(t)$ is periodic with period 1. So from (1.4),

(1.12)
$$r_{s}(\phi_{(x,y)}) = \frac{1}{2}B_2(rx + sy).$$

For $\begin{bmatrix} r \\ s \end{bmatrix} \in S$ we have $\begin{bmatrix} r+Nks \\ ls \end{bmatrix} = \begin{bmatrix} r \\ ls \end{bmatrix}$, so

$$r_{{r+Nks \brack ls}}(\phi_{(x,y)}) = r_{{r \brack ls}}(\phi_{(x,y)}) = \frac{1}{2}e({r \brack ls})B_2(rx + lsy) = \frac{1}{l}e({r \brack s})a_0(\phi_{(x,ly)}|\gamma_{{r \brack s}})$$

$$= \frac{1}{l}r_{{r \brack s}}(\phi_{(x,ly)})$$

since $e(\begin{bmatrix} r \\ ls \end{bmatrix}) = e(\begin{bmatrix} r \\ s \end{bmatrix})/l$ for l|N and since $l \nmid r$. Hence

(1.13)
$$\Sigma_1 = \sum_{{r \mid s \mid \in S}} r_{{r \mid s \mid }}(\phi_{(x,ly)}) {r \mid s \mid }.$$

For $[{r\atop s}]\in S'$ we have $[{r+Nks\atop ls}]=[{r/l+Nks/l\atop s}],$ so by (1.12)

(1.14)
$$\Sigma_2 = l \sum_{\substack{r \\ s \in S'}} \sum_{k=0}^{l-1} e({r \choose s}) \frac{1}{2} B_2(rx/l + Nxks/l + sy).$$

Write $x = a/N_2$ with $N_2|N$ and $(a, N_2) = 1$. We now divide into two subcases according as l divides N/N_2 or not. Suppose first $l \nmid (N/N_2)$. Then $l \nmid a$, so

(1.15)
$$\Sigma_2 = l \sum_{[r] \in S'} \sum_{k=0}^{l-1} e([r]) \frac{1}{2} B_2(rx/l + ks/l + sy) [r].$$

By [21, Prop. 2.4.7] and its proof, we have

(1.16)
$$\phi_{(x,y)}|T_l = \phi_{(x,ly)} = \sum_{k=0}^{l-1} \sum_{j=0}^{l-1} \phi_{((x+j)/l,y+k/l)}.$$

For $\begin{bmatrix} r \\ s \end{bmatrix} \in S'$, $0 \le k \le l-1$ and $0 \le j \le l-1$, we have

(1.17)
$$r_{\begin{bmatrix} r \\ s \end{bmatrix}}(\phi_{((x+j)/l,y+k/l)}) = e(\begin{bmatrix} r \\ s \end{bmatrix}) \frac{1}{2} B_2 \left(\frac{x+j}{l} r + \left(y + \frac{k}{l} \right) s \right)$$
$$= e(\begin{bmatrix} r \\ s \end{bmatrix}) \frac{1}{2} B_2 \left(\frac{xr}{l} + ys + \frac{ks}{l} \right).$$

Putting (1.11), (1.13), (1.15)-(1.17) together, we have $T_l^* \delta_{\Gamma}(\phi_{(x,y)}) = \delta_{\Gamma}(\phi_{(x,y)}|T_l)$ for $l \nmid (N/N_2)$.

Suppose now $l(N/N_2)$. The proof of [21, Prop. 2.4.7] shows that

(1.18)
$$\phi_{(x,y)}|T_l = l \sum_{k=0}^{l-1} \phi_{((x+k)/l,y)}.$$

By (1.13), [21, Prop. 2.4.2(b)] and (1.12), we have

(1.19)
$$\Sigma_{1} = \sum_{\begin{bmatrix} r \\ s \end{bmatrix} \in S} \sum_{k=0}^{l-1} \sum_{j=0}^{l-1} r_{\begin{bmatrix} r \\ s \end{bmatrix}} (\phi_{((x+k)/l,y+j/l)}) \begin{bmatrix} r \\ s \end{bmatrix}$$
$$= \sum_{\begin{bmatrix} r \\ s \end{bmatrix} \in S} e(\begin{bmatrix} r \\ s \end{bmatrix}) \sum_{k=0}^{l-1} \sum_{j=0}^{l-1} \frac{1}{2} B_{2}(rx/l + sy + kr/l + sj/l).$$

As k and j run through $\{0, 1, \dots, l-1\}$, $kr+sj \pmod{l}$ runs through $\{0, 1, \dots, l-1\}$ l times. Thus (1.19) and (1.12) give

(1.20)
$$\Sigma_{1} = l \sum_{\begin{bmatrix} r \\ s \end{bmatrix} \in S} e(\begin{bmatrix} r \\ s \end{bmatrix}) \sum_{k=0}^{l-1} \frac{1}{2} B_{2}(rx/l + k/l + sy) \begin{bmatrix} r \\ s \end{bmatrix}$$
$$= l \sum_{\begin{bmatrix} r \\ s \end{bmatrix} \in S} e(\begin{bmatrix} r \\ s \end{bmatrix}) \sum_{k=0}^{l-1} \frac{1}{2} B_{2}(rx/l + kr/l + sy) \begin{bmatrix} r \\ s \end{bmatrix}$$
$$= l \sum_{\begin{bmatrix} r \\ s \end{bmatrix} \in S} \sum_{k=0}^{l-1} r_{\begin{bmatrix} r \\ s \end{bmatrix}} (\phi_{((x+k)/l,y)}) \begin{bmatrix} r \\ s \end{bmatrix}.$$

On the other hand, (1.14) and (1.12) give

(1.21)
$$\Sigma_{2} = l^{2} \sum_{\substack{[s] \in S' \\ s}} e([s]) \frac{1}{2} B_{2}(rx/l + sy) \begin{bmatrix} r \\ s \end{bmatrix}$$
$$= l \sum_{k=0}^{l-1} \sum_{\substack{[r] \in S' \\ s}} r_{[s]} (\phi_{((x+k)/l,y)}) \begin{bmatrix} r \\ s \end{bmatrix}.$$

Combining (1.18), (1.20) and (1.21) gives $T_l^* \delta_{\Gamma}(\phi_{(x,y)}) = \delta_{\Gamma}(\phi_{(x,y)}|T_l)$. This proves Lemma 1.11.

Observe that since $\mathcal{P}(E)$ and $\mathcal{R}(E)$ are fractional ideals of $\mathbb{Q}[\epsilon_1, \epsilon_2]$, A_E and by duality C_E have natural $\mathbb{Z}[\epsilon_1, \epsilon_2]$ -module structures. The composite map (1.5) is a $\mathbb{Z}[\epsilon_1, \epsilon_2]$ -module map with respect to these structures. If $x \in C_E$ is represented by $\eta(\delta_{\Gamma}(E))$ with $\eta \in \mathcal{R}(E)^*$, then Lemma 1.11 shows that T_l^*x is represented by $\eta(\delta_{\Gamma}(E|T_l)) = \eta(b_l\delta_{\Gamma}(E))$, where b_l is the eigenvalue of T_l on E. Hence T_l^* acts by multiplication by b_l on C_E .

Proposition 1.12. Under the same assumptions as in Proposition 1.9, the image of $C_E[p]_{/\mathbb{F}_p}(\overline{\mathbb{F}}_p) \otimes_{\mathbb{F}_p} \overline{\mathbb{F}}_p$ under φ is the $\overline{\mathbb{F}}_p$ -module generated by \overline{f} .

Proof. Let $\eta \in \mathcal{R}(E)^*$. Choose $r \in \mathbb{Z}$ such that $r(\overline{\theta(\eta(\delta_{\Gamma}(E)))})$ is of order dividing p. Here $\overline{\theta(\cdot)}$ means the specialization to the special fiber of the \mathcal{O} -valued point of C_{E/\mathbb{Z}_p} corresponding to $\theta(\cdot)$. By Prop. 1.2 and Lemma 1.11, we have for each prime l,

$$\varphi(r\overline{\theta(\eta(\delta_{\Gamma}(E)))})|T_{l} = \varphi(rT_{l}^{*}\overline{\theta(\eta(\delta_{\Gamma}(E)))})$$

$$= b_{l}\varphi(r\overline{\theta(\eta(\delta_{\Gamma}(E)))})$$

$$= a_{l}\varphi(r\overline{\theta(\eta(\delta_{\Gamma}(E)))}).$$

It follows that $\varphi(r\overline{\theta(\eta(\delta_{\Gamma}(E))})) = c \cdot \overline{f}$ for some $c \in \overline{\mathbb{F}}_p$. Since $C_E[p]_{/\mathbb{F}_p}(\overline{\mathbb{F}}_p) \neq 0$ by Cor. 1.10 and $\eta \in \mathcal{R}(E)^*$ was arbitrary, $\varphi\left(C_E[p]_{/\mathbb{F}_p}(\overline{\mathbb{F}}_p) \otimes \overline{\mathbb{F}}_p\right) = \overline{\mathbb{F}}_p \cdot \overline{f}$.

We can now complete the proof of Theorem 0.4. By Propositions 1.3, 1.12 and the injectivity of φ , we have $A_f[\mathfrak{p}]_{/\mathbb{F}_p}(\overline{\mathbb{F}}_p) \otimes \overline{\mathbb{F}}_p = C_E[p]_{/\mathbb{F}_p}(\overline{\mathbb{F}}_p) \otimes \overline{\mathbb{F}}_p$, hence $A_f[\mathfrak{p}]_{/\mathbb{F}_p}(\overline{\mathbb{F}}_p) = C_E[p]_{/\mathbb{F}_p}(\overline{\mathbb{F}}_p)$. Since the special fiber of $(A_f[\mathfrak{p}] \cap C_E)_{/\mathbb{Z}_p}$ is $A_f[\mathfrak{p}]_{/\mathbb{F}_p} \cap C_{E/\mathbb{F}_p}$, it follows that $A_f[\mathfrak{p}] \cap C_E \neq 0$. This proves Theorem 0.4.

2. Cyclic isogenies of modular elliptic curves

In this section, we prove Theorem 0.3. Let A_1 be an optimal curve over \mathbb{Q} of conductor N. Let p>2 be a prime where A_1 has good ordinary reduction and let $\beta:A_1\to A$ be a cyclic \mathbb{Q} -isogeny of degree divisible by p. Let $\epsilon:G_{\mathbb{Q}}\to \operatorname{Aut}(\ker\beta[p])$ be the character giving the action of $G_{\mathbb{Q}}$ on $\ker\beta[p]$ and χ the Teichmüller character giving the action of $G_{\mathbb{Q}}$ on μ_p . Consider the following three cases:

- 1. $\epsilon = 1$,
- $2. \ \epsilon = \chi,$
- 3. $\epsilon \neq 1, \chi$.

We shall show that if p > 7, the first two cases do not occur and β is étale at p in the last case.

2.1. Reduction to $\epsilon \neq 1, \chi$. If $\epsilon = 1$, then $\ker \beta[p] \subset A(\mathbb{Q})_{\text{tors}}$. By Mazur's classification theorem [11, Thm. 2], this implies $p \leq 7$. Thus if p > 7, this case cannot occur

Suppose next $\epsilon = \chi$, so $\ker \beta[p] \cong \mu_p$. Let $A' = A_1/\ker \beta[p]$ and let $\beta' : A_1 \to A'$ be the natural isogeny. By [13, §15, Thm. 1], the kernel of the dual isogeny $\check{\beta}' : A' \to A_1$ is the Cartier dual of $\ker \beta[p]$ and so is isomorphic to $\mathbb{Z}/p\mathbb{Z}$ as $G_{\mathbb{Q}}$ -module. This implies that $p \mid \#A'(\mathbb{Q})_{\text{tor}}$. By Mazur's classification theorem again, this cannot happen if p > 7.

We assume, henceforth, $\epsilon \neq 1, \chi$. Let $\rho : G_{\mathbb{Q}} \to \operatorname{Aut}(A_1[p]) \cong \operatorname{GL}_2(\mathbb{F}_p)$ be the Galois representation on the *p*-torsion points of A_1 . Then with respect to a suitable basis, we have

(2.1)
$$\rho \sim \begin{pmatrix} \epsilon & * \\ 0 & \epsilon' \end{pmatrix}$$

for some character $\epsilon': G_{\mathbb{Q}} \to \mathbb{F}_p^*$. The Weil pairing shows that $\det \rho(\operatorname{Frob}_l) \equiv l \pmod{p}$ for any prime $l \nmid Np$, where Frob_l is a Frobenius element of $G_{\mathbb{Q}}$ for l. It

follows from our assumption $\epsilon \neq 1, \chi$ that $\epsilon' \neq 1$. Since A_1 is ordinary at p, there is an exact sequence of finite flat group schemes over \mathbb{Z}_p

$$0 \to A_1[p]^0_{/\mathbb{Z}_p} \to A_1[p]_{/\mathbb{Z}_p} \to A_1[p]^{\text{\'et}}_{/\mathbb{Z}_p} \to 0,$$

where the flanking terms are each of order p such that the inertia group I_p acts via χ on the $G_{\mathbb{Q}_p}$ -module associated to $A_1[p]^0_{/\mathbb{Z}_p}$ and acts trivially on that associated to $A_1[p]^{\text{\'et}}_{/\mathbb{Z}_p}$. It follows that exactly one of ϵ and ϵ' is unramifed at p. The next two lemmas show that we may assume ϵ' is unramified at p.

Lemma 2.1. Let $\beta: A \to A'$ be a cyclic \mathbb{Q} -isogeny of elliptic curves over \mathbb{Q} . Suppose A has good reduction at p and $\ker \beta[p^{\infty}](\overline{\mathbb{Q}})$ is unramified at p. Then β is étale at p.

Proof. Let $\beta_p: A_{/\mathbb{Z}_p} \to A'_{/\mathbb{Z}_p}$ be the extension of β to Néron models over \mathbb{Z}_p . To show that β_p is étale, we have to show that it is flat and unramified. Note that β_p is quasi-finite and flat [1, 7.3, Lemmas 1, 2]. We check that it is unramified at points of residue characteristic p. The kernel $\ker \beta_p$ of β_p is a finite flat group scheme over \mathbb{Z}_p . Let K be the extension of \mathbb{Q}_p cut out by $\ker \beta_p(\overline{\mathbb{Q}}_p)$ and let \mathcal{O} denote its ring of integers. Since A has good reduction at p, A[m] is unramified at p for all m prime to p by the Néron-Ogg-Shafarevich criterion. By the assumption on $\ker \beta[p^\infty](\overline{\mathbb{Q}})$, $\ker \beta(\overline{\mathbb{Q}}_p)$ is unramified as $G_{\mathbb{Q}_p}$ -module. Thus $\ker \beta_p$ is a Néron model of $\ker \beta_p/\mathbb{Q}_p$ ([1, 7.1, Cor. 6]). Let $x \in \ker \beta_p(\mathcal{O})$ be the \mathcal{O} -valued point corresponding to a generator of $\ker \beta_p(K)$. By the specialization lemma in $[11, \S 1]$, the order of the specialization of x to the residue field of \mathcal{O} equals the order of x. So if $\overline{\beta}_p$ is the reduction of β_p mod p, then

$$\#\mathrm{ker}\overline{\beta}_p = \#\mathrm{ker}\beta = \mathrm{deg}\beta = \mathrm{deg}\overline{\beta}_p.$$

By [20, 4.10(a)], $\#\ker \overline{\beta}_p$ equals the degree of separability $\deg_s \overline{\beta}_p$ of $\overline{\beta}_p$. So $\deg_s \overline{\beta}_p = \deg \overline{\beta}_p$; hence $\overline{\beta}_p$ is separable and unramified by [20, 4.10(c)]. This proves that β_p is étale.

Lemma 2.2. Let $\beta: A \to A'$ be a cyclic \mathbb{Q} -isogeny of degree d divisible by p. Suppose A has good ordinary reduction at p and $\ker \beta[p]$ is unramified at p. Then $\ker \beta[p^{\infty}]$ is unramified at p.

Proof. Let ϵ_1 be the Galois character on $\ker\beta[p^\infty]$. Write $\epsilon_1\oplus\epsilon_2$ for the semi-simplification of the Galois representation $\rho:G_{\mathbb Q}\to\operatorname{Aut}(A[p^r])$, where ϵ_2 is some Galois character and $p^r\|d$. Since p is ordinary, one of the characters ϵ_1 and ϵ_2 is unramified at p and the other when restricted to I_p is the cyclotomic character on μ_{p^r} . By our assumption, $\epsilon_1\pmod p$ is unramified at p. Since p>2, ϵ_1 is unramified at p. This proves the lemma.

If ϵ is unramified at p, then by Lemma 2.2, $\ker \beta[p^{\infty}]$ is unramified at p. Thus β is étale at p by Lemma 2.1, hence Theorem 0.3. So we assume, from now on,

(2.2)
$$\epsilon$$
 is ramified at p .

Let $\pi: X_1(N) \to A_1$ be a modular parametrization and let f be the associated weight 2 normalized newform on $\Gamma_1(N)$. Write

(2.3)
$$f(z) = \sum_{n=1}^{\infty} a_n q^n, \quad q = e^{2\pi i z}, \quad z \in \mathfrak{H}$$

for the q-expansion of f at the cusp ∞ . We show that there is a weight 2 Eisenstein series E on $\Gamma_1(N)$ associated to ρ such that \mathfrak{P} is an Eisenstein prime for E and f (Prop. 2.6). Applying Theorem 0.4 and the classification theorem of rational cyclic isogenies of elliptic curves over \mathbb{Q} , we deduce that p < 5 (§2.3).

2.2. Eisenstein series associated to ρ . Let χ_1 and χ_2 be two Dirichlet characters, not necessarily primitive, modulo N_1 and N_2 respectively. Put

$$G(a_1,a_2;\mathfrak{a}_1,\mathfrak{a}_2) = \frac{1}{N_2} \sum_{t \in N_2^{-1}\mathbb{Z}/\mathbb{Z}} e^{2\pi i (-ta_2)} E(z;a_1,t;\mathfrak{a}_1,\mathfrak{a}_2^{-1})$$

and

(2.4)
$$E(\chi_1, \chi_2) = \frac{1}{2} \sum_{a_1=0}^{N_1-1} \sum_{a_2=0}^{N_2-1} \chi_1(a_1) \chi_2(a_2) G(a_1, a_2; N_1 \mathbb{Z}, \mathbb{Z})$$

where $E(z; a_1, a_2; \mathfrak{a}_1, \mathfrak{a}_2)$ is as in (1.7).

Proposition 2.3. Notation being as above, assume that not both χ_1 and χ_2 are the trivial character of any conductor. Then

- (a) $E(\chi_1, \chi_2)$ is a weight 2 Eisenstein series on $\Gamma_0(N_1N_2)$ of character $(\chi_1\chi_2)^{-1}$. (b) The Dirichlet series $L(E, s) := \sum_{n=1}^{\infty} b_n n^{-s}$ of $E(\chi_1, \chi_2)$ is

$$L(\chi_1, s)L(\chi_2, s-1),$$

where b_n is the n-th Fourier coefficient of $E(\chi_1, \chi_2)$ at ∞ .

(c) If $\chi_1 \neq 1$, then the constant term of the Fourier expansion of $E(\chi_1, \chi_2)$ at ∞

Proof. (a) and (b) follow from [19, Prop. 3.4] for Artin characters of degree 1 of totally real number fields of degree > 1. But, as remarked in [25, §1.5], the same result holds for \mathbb{Q} if χ_1 and χ_2 are not both the trivial character of any conductor. (c) follows from the Fourier expansion of $E(z; a_1, a_2; N_1 \mathbb{Z}, \mathbb{Z})$ in (1.8), the definition of $E(\chi_1, \chi_2)$ in (2.4), and the assumption that $\chi_1 \neq 1$.

Remark 2.4. Using (1.8), we find that the Fourier expansion of $E(\chi_1, \chi_2)$ at ∞ is

(2.5)
$$E(\chi_1, \chi_2)(z) = \sum_{c=1}^{\infty} \sum_{b=1}^{\infty} \chi_1(c) \chi_2(b) b e^{2\pi i (bcz)}.$$

From this, we can deduce Prop. 2.3(b) in a similar fashion to [21, Prop. 3.4.2(b)].

We want to apply Prop. 2.3 to certain Dirichlet characters associated to ϵ and ϵ' in (2.1) to get an Eisenstein series with suitable properties. For this, we consider the ramification behavior of the primes dividing N in $\mathbb{Q}(A_1[p])/\mathbb{Q}$. For each prime q, let T_q be the q-adic Tate module of A_1 and $V_q = T_q \otimes_{\mathbb{Z}_q} \mathbb{Q}_q$. Let $H_q = H^1_{\text{\'et}}(A_1 \times_{\mathbb{Q}} \overline{\mathbb{Q}}, \mathbb{Q}_q)$. Then $V_q = H_q \otimes_{\mathbb{Q}_q} \mathbb{Q}_q(1)$, and the collection $\{H_q\}_q$ forms a compatible system Vof q-adic representations of $G_{\mathbb{Q}}$ whose L-function L(V,s) is defined by an Euler product (for Re $s > \frac{3}{2}$):

$$L(V,s) = \prod_{l} L_l(V,s) = \prod_{l} \det(1 - \text{Frob}_l^{-1} l^{-s} | (H_q)^{I_l})^{-1},$$

where for each l, q is a prime $\neq l$ and $(H_q)^{I_l}$ is the maximal subspace of H_q on which I_l acts trivially.

Let l be a prime dividing N. Suppose $l \parallel N$. Then A_1 has multiplicative reduction at l. By [16, §1.12], there is an unramified extension K_l/\mathbb{Q}_l of degree ≤ 2 such that A_1 is isomorphic over K_l to the Tate curve $E_q = \mathbb{G}_m/q^{\mathbb{Z}}$ for some $q \in l\mathbb{Z}_l$ determined by the j-invariant of A_1 . We have an exact sequence of G_{K_l} -modules for each n:

$$(2.6) 0 \to \mu_{p^n} \to A_1[p^n] \to \mathbb{Z}/p^n\mathbb{Z} \to 0.$$

As ρ is given by (2.1), both ϵ and ϵ' are unramified at l. On taking inverse limit over n and then tensoring with \mathbb{Q}_p , (2.6) gives a (non-split) exact sequence of G_{K_l} -modules:

$$0 \to \mathbb{Q}_p(1) \to V_p \to \mathbb{Q}_p \to 0.$$

Thus $G_{\mathbb{Q}_l}$ acts via some character ψ_l of $\operatorname{Gal}(K_l/\mathbb{Q}_l)$ on $(V_p)_{I_l}$ (= the maximal quotient of V_p on which I_l acts trivially). From (2.1), $\psi_l \equiv \epsilon|_{G_{\mathbb{Q}_l}} \pmod{p}$ or $\psi_l \equiv \epsilon'|_{G_{\mathbb{Q}_l}} \pmod{p}$. Let $S_1 = \{l : l | N, \ \psi_l \equiv \epsilon|_{G_{\mathbb{Q}_l}} \pmod{p}\}$ and $S_2 = \{l : l | N, \ l \not\in S_1\}$.

Suppose now $l^2|N$. Then A_1 has additive reduction at l. By [16, §5.6 Prop. 23b], the images of I_l under ϵ and ϵ' are cyclic of order 2, 3, 4 or 6. In particular, ϵ and ϵ' are ramified at l.

Let $f_{\epsilon_{0,\mathrm{prim}}}$ and $f_{\epsilon'_{0,\mathrm{prim}}}$ be the conductors of the primitive Dirichlet characters $\epsilon_{0,\mathrm{prim}}$ and $\epsilon'_{0,\mathrm{prim}}$ associated to ϵ and ϵ' respectively. Let $\epsilon_{0,\mathrm{prim}}\chi^{-1}$ be the primitive Dirichlet character such that $\epsilon_{0,\mathrm{prim}} = \epsilon_{0,\mathrm{prim}}\chi^{-1} \cdot \chi$. Here we view χ as both a character of $G_{\mathbb{Q}}$ and a Dirichlet character. Since ϵ' is unramified at p (cf. (2.2)) and $\epsilon(l)\epsilon'(l) \equiv l \pmod{p}$ for any $l \nmid Np$, the conductor $f_{\epsilon_{0,\mathrm{prim}}\chi^{-1}}$ of $\epsilon_{0,\mathrm{prim}}\chi^{-1}$ is prime to p. Now let $\epsilon_0\chi^{-1}$ (resp. ϵ_0 , ϵ'_0) be the Dirichlet character modulo $f_{\epsilon_0\chi^{-1}} := f_{\epsilon_{0,\mathrm{prim}}\chi^{-1}} \cdot \prod_{l \in S_2} l$ (resp. $f_{\epsilon_0} := f_{\epsilon_{0,\mathrm{prim}}} \cdot \prod_{l \in S_1} l$) whose primitive character is $\epsilon_{0,\mathrm{prim}}\chi^{-1}$ (resp. $\epsilon_{0,\mathrm{prim}}$, $\epsilon'_{0,\mathrm{prim}}$). (For a Dirichlet character ψ modulo m, we set $\psi(n) = 0$ if $(n,m) \neq 1$.)

Lemma 2.5. (a) $f_{\epsilon_0\chi^{-1}}f_{\epsilon'_0}$ divides N. (b) $f_{\epsilon_0\chi^{-1}}f_{\epsilon'_0}$ and N have the same prime divisors.

Proof. (a) By a result of Carayol [2, 0.8], the level N of f is equal to the conductor of the p-adic representation V_p . (For the definition of the latter, see for example [4, §1.1].) Put $\Phi = \ker \beta[p]$ and $\Phi' = A_1[p]/\Phi$. For any prime $l \neq p$, we have

$$\dim_{\mathbb{F}_p} A_1[p]^{G_i} \le \dim_{\mathbb{F}_p} \Phi^{G_i} + \dim_{\mathbb{F}_p} {\Phi'}^{G_i},$$

where $G_0 \supset G_1 \supset \cdots$ is the series of ramification groups in $\operatorname{Gal}(\mathbb{Q}_l(A_1[p])/\mathbb{Q}_l)$. Since $\sum_{i=0}^{\infty} [G_0:G_i]^{-1} \dim_{\mathbb{F}_p}(\Phi/\Phi^{G_i})$ is the l-part of $f_{\epsilon_0, \operatorname{prim}}$ and similarly for Φ' and ϵ' , the l-part of $f_{\epsilon_0, \operatorname{prim}} f_{\epsilon'_0, \operatorname{prim}}$ divides N. To see that the l-part of $f_{\epsilon_0} f_{\epsilon'_0}$ divides N, we need only consider the case $l \parallel N$. In this case $l \nmid f_{\epsilon_0, \operatorname{prim}} f_{\epsilon'_0, \operatorname{prim}}$, so by the definition of f_{ϵ_0} and $f_{\epsilon'_0}$ we have $l \parallel f_{\epsilon_0} f_{\epsilon'_0}$. Hence $f_{\epsilon_0 \chi^{-1}} f_{\epsilon'_0}$ divides N. This proves (a).

(b) Let l be a prime. If l || N, then $l || f_{\epsilon_0}$ or $l || f_{\epsilon'_0}$. If $l^2 || N$, then ϵ and ϵ' are both ramified at l, so $l || f_{\epsilon_0}$ and $l || f_{\epsilon'_0}$. This proves (b).

We now apply Prop. 2.3 to $\chi_1 = \epsilon'_0$ and $\chi_2 = \epsilon_0 \chi^{-1}$ to get an Eisenstein series $E = E(\epsilon'_0, \epsilon_0 \chi^{-1})$. (Recall that, under our assumption (2.2), ϵ'_0 and $\epsilon_0 \chi^{-1}$ are both non-trivial.)

Proposition 2.6. The Fourier coefficients of the q-expansions of E and f at ∞ are congruent mod \mathfrak{P} :

$$E(q) \equiv f(q) \pmod{\mathfrak{P}}.$$

Proof. By Prop. 2.3(b), the Euler factor $L_l(E,s)$ of L(E,s) at a prime l is $(1 - \epsilon'_0(l)l^{-s})^{-1}(1 - \epsilon_0\chi^{-1}(l)l^{1-s})^{-1}$. We have a formal Euler product for the Dirichlet series L(f,s) of f:

$$L(f,s) = \prod_{l} L_l(f,s) = \prod_{l|N} (1 - a_l l^{-s})^{-1} \prod_{l \nmid N} (1 - a_l l^{-s} + l^{1-2s})^{-1},$$

where a_l is the l-th Fourier coefficient of f in (2.3). By [2], L(f, s) = L(V, s). For $l \nmid Np$, we have $l\epsilon_0\chi^{-1}(l) \cdot \epsilon'_0(l) = l$ and, by the Eichler-Shimura relations,

$$a_l \equiv \operatorname{tr}(\rho(\operatorname{Frob}_l)) = \epsilon(\operatorname{Frob}_l) + \epsilon'(\operatorname{Frob}_l) \equiv l\epsilon_0 \chi^{-1}(l) + \epsilon'_0(l) \pmod{\mathfrak{P}},$$

so

$$(1 - a_l l^{-s} + l^{1-2s})^{-1} \equiv (1 - l\epsilon_0 \chi^{-1}(l)l^{-s})^{-1} (1 - \epsilon_0'(l)l^{-s})^{-1} = L_l(E, s) \pmod{\mathfrak{P}}.$$

Let l|N. Then $L_l(f,s) = (1 - a_l l^{-s})^{-1}$. Suppose l|N. By (2.1) and the definition of ϵ'_0 and $\epsilon_0 \chi^{-1}$, we have

$$(1 - a_l l^{-s})^{-1} \equiv (1 - \epsilon^*(l) l^{-s})^{-1} \equiv L_l(E, s) \pmod{\mathfrak{P}},$$

where $\epsilon^* = \epsilon_0$ or ϵ'_0 according as $l \in S_1$ or $l \in S_2$. Next suppose $l^2|N$. Then $a_l = 0$ and $L_l(f,s) = 1$. Since $\epsilon'_0(l) = \epsilon_0 \chi^{-1}(l) = 0$, $L_l(E,s) = 1$.

Finally, suppose l=p. Since A_1 is ordinary at p, a_p is congruent mod \mathfrak{P} to the eigenvalue of Frobenuis on the p-adic Tate module of A_{1/\mathbb{F}_p} . So we have

$$(1 - a_p p^{-s} + p \cdot p^{-2s})^{-1} \equiv (1 - a_p p^{-s})^{-1} \equiv (1 - \epsilon_0'(p)p^{-s})^{-1} \pmod{\mathfrak{P}}.$$

Hence $L_l(f, s)$ is congruent mod \mathfrak{P} to $L_l(E, s)$ for each l. This shows that $a_n \equiv b_n \pmod{\mathfrak{P}}$ for each $n \geq 1$ and, together with Prop. 2.3(c), proves the proposition.

We show that $E = E(\epsilon'_0, \epsilon_0 \chi^{-1})$ is a common eigenfunction for all T_l and $\langle l \rangle$.

Lemma 2.7. For any prime l, we have

- (a) $E|\langle l\rangle = E \text{ if } l \nmid N;$
- (b) $E|T_l = (\epsilon'_0(l) + l\epsilon_0\chi^{-1}(l))E$.

Proof. (a) Since $\epsilon'_0(l) \cdot \epsilon_0 \chi^{-1}(l) = 1$ for all $l \nmid N$, E is modular on $\Gamma_0(N)$ by Prop. 2.3(a). Hence $E|\langle l \rangle = E|\sigma_l = E$.

(b) We use the q-expansion of E at ∞ given by (2.5):

$$E(z) = \sum_{c=1}^{\infty} \sum_{b=1}^{\infty} \epsilon'_0(c) \epsilon_0 \chi^{-1}(b) b q^{bc}, \quad q = e^{2\pi i z},$$
$$= \sum_{n=1}^{\infty} b_n q^n,$$

where $b_n = \sum_{bc=n} \epsilon'_0(c) \epsilon_0 \chi^{-1}(b) b$ for each $n \ge 1$.

By Prop. 2.3(a), the level of E divides $f_{\epsilon_0\chi^{-1}}f_{\epsilon'_0}$, which has the same prime divisors as N by Lemma 2.5. The action of T_l on E is then given by ([18, (3.5.12)]):

(2.7)
$$E|T_l = \sum_{n=1}^{\infty} b_{ln} q^n + l \sum_{n=1}^{\infty} b_n q^{ln}, \quad l \nmid N,$$

$$(2.8) \qquad = \sum_{n=1}^{\infty} b_{ln} q^n, \quad l|N.$$

Suppose first $l \nmid N$. Then

$$(2.9) b_{ln} = \sum_{bc=ln} \epsilon'_{0}(c)\epsilon_{0}\chi^{-1}(b)b = \sum_{bc=ln\atop l\nmid b} \epsilon'_{0}(c)\epsilon_{0}\chi^{-1}(b)b + \sum_{bc=ln\atop l\mid b} \epsilon'_{0}(c)\epsilon_{0}\chi^{-1}(b)b = \epsilon'_{0}(l) \sum_{bc'=n\atop l\mid b} \epsilon'_{0}(c')\epsilon_{0}\chi^{-1}(b)b + l\epsilon_{0}\chi^{-1}(l) \sum_{b'c=n} \epsilon'_{0}(c)\epsilon_{0}\chi^{-1}(b')b'.$$

Since $\epsilon'_0(l)\epsilon_0(l) = \chi(l)$ for all $l \nmid Np$ and $p \nmid f_{\epsilon'_0}f_{\epsilon_0\chi^{-1}}$, it follows that $\epsilon'_0(l) = \epsilon_0\chi^{-1}(l^{-1})$ for all $l \nmid N$. So

$$(2.10) lb_n = l \sum_{bc=n} \epsilon'_0(c)\epsilon_0 \chi^{-1}(b)b$$

$$= \epsilon_0 \chi^{-1}(l^{-1}) \sum_{bc=n} \epsilon'_0(c)\epsilon_0 \chi^{-1}(lb)lb$$

$$= \epsilon_0 \chi^{-1}(l^{-1}) \sum_{bc=ln \atop l|b} \epsilon'_0(c)\epsilon_0 \chi^{-1}(b)b$$

$$= \epsilon'_0(l) \sum_{bc=ln \atop l|b} \epsilon'_0(c)\epsilon_0 \chi^{-1}(b)b.$$

(b) follows from (2.7), (2.9) and (2.10) for $l \nmid N$. For $l \mid N$, we have

$$b_{ln} = \begin{cases} l\epsilon_0 \chi^{-1}(l)b_n & \text{if } l|f_{\epsilon'_0} \text{ and } l \nmid f_{\epsilon_0 \chi^{-1}}, \\ \epsilon'_0(l)b_n & \text{if } l|f_{\epsilon_0 \chi^{-1}} \text{ and } l \nmid f_{\epsilon'_0}, \\ 0 & \text{otherwise,} \end{cases}$$

and (b) follows from (2.8).

2.3. Completion of proof of Theorem 0.3 in the case $\epsilon \neq 1$, χ . We can now complete the proof of Theorem 0.3 in this case, assuming (2.2). Applying Theorem 0.4 to f and E, we have $A_1[p] \cap C_E \neq 0$. By [21, Thm. 3.2.4], C_E is stable under the action of $G_{\mathbb{Q}}$, which is given by ϵ' . Since ϵ (resp. ϵ') is ramified (resp. unramified) at p, it follows that $\ker \beta[p]$ and $A_1[p] \cap C_E$ are two independent cyclic subgroups of order p defined over \mathbb{Q} . Hence $A_1/\ker \beta[p]$ is an elliptic curve over \mathbb{Q} which has a cyclic subgroup of order p^2 defined over \mathbb{Q} . Kenku [7, Thm. 1] has shown that the table in the introduction of [11] is a complete list of d for which there is a rational cyclic d-isogeny of elliptic curves over \mathbb{Q} . This implies that $p \leq 5$. Thus if p > 7, ϵ is unramified at p. This completes the proof of Theorem 0.3.

3. Integrality of p-adic L-functions

We now apply Theorem 0.3 to establish Theorem 0.2. We shall use the following result of Stevens.

Theorem 3.1. ([23, Thm. 4.6]) Suppose p > 2. Let $\pi : X_1(N) \to A$ be a modular parametrization and $c(\pi)$ the Manin constant of π . Then $c(\pi)\nu_{A,\Delta}$ takes values in $\mathcal{L}(A) \otimes \mathbb{Z}_p$.

To prove Theorem 0.2, it suffices by Theorem 3.1 to show that there is a modular parametrization $\pi: X_1(N) \to A$ such that $c(\pi)$ is a p-unit. Let $\mathcal A$ be the $\mathbb Q$ -isogeny class of elliptic curves over $\mathbb Q$ containing A. Let A_1 be the optimal curve in $\mathcal A$ and $\pi_1: X_1(N) \to A_1$ an optimal parametrization (cf. the introduction). Let n be the largest square dividing N.

Proposition 3.2. With notation as above, $c(\pi_1) \in \mathbb{Z}[1/2n]^*$.

Proof. The analogous result for a strong parametrization $\pi_0: X_0(N) \to A_0$ (which takes the cusp ∞ to the origin of A_0) of the strong Weil curve $A_0 \in \mathcal{A}$ has been proved in [11, Cor. 4.1] by showing that $\pi_0: X_0(N)_{\mathbb{Z}[\frac{1}{2n}]}^{\mathrm{smooth}} \to A_{0/\mathbb{Z}[\frac{1}{2n}]}$ is a formal immersion along the ∞ -section, where $X_0(N)_{\mathbb{Z}[\frac{1}{2n}]}^{\mathrm{smooth}}$ is the smooth locus of $X_0(N)_{\mathbb{Z}[\frac{1}{2n}]} \to \mathrm{Spec}\,\mathbb{Z}$. An analysis of the arguments used there shows that for an optimal parametrization $\pi_1: X_1(N) \to A_1$ which takes the cusp 0 to the origin of $A_1, \pi_1: X_1(N)_{\mathbb{Z}[\frac{1}{2n}]}^{\mathrm{smooth}} \to A_{1/\mathbb{Z}[\frac{1}{2n}]}^{\mathrm{smooth}}$ is a formal immersion along the 0-section. Since $X_1(N)_{\mathbb{Z}[\frac{1}{2n}]}$ is irreducible if $l \nmid N$ and since the Atkin-Lehner involution w_N interchanges the two irreducible components of $X_1(N)_{\mathbb{F}_l}$ if $l \parallel N$, we have $c(\pi_1) \in \mathbb{Z}[\frac{1}{2n}]^*$.

Lemma 3.3. Let $X \stackrel{f}{\to} Y$, $Y \stackrel{g}{\to} Z$ be morphisms of schemes. Suppose that f is smooth. Then there is an exact sequence of \mathcal{O}_X -modules

$$0 \to f^*\Omega^1_{Y/Z} \to \Omega^1_{X/Z} \to \Omega^1_{X/Y} \to 0,$$

where $\Omega^1_{X/Y}$ is the sheaf of relative differentials of degree 1 of X over Y and similarly for $\Omega^1_{Y/Z}$ and $\Omega^1_{X/Z}$, and X is considered as a Z-scheme via $g \circ f$.

Proof. See [1, 2.2 Prop. 5(b)] and the remark after it.

Corollary 3.4. Let $\beta: A \to A'$ be a \mathbb{Q} -isogeny of elliptic curves over \mathbb{Q} étale at p. Let $\Omega^1_{A/\mathbb{Z}_p}$ and $\Omega^1_{A'/\mathbb{Z}_p}$ be the sheaves of Néron differentials on $A_{/\mathbb{Z}_p}$ and $A'_{/\mathbb{Z}_p}$ respectively. Then β induces an isomorphism

$$\beta^*: H^0(A'_{/\mathbb{Z}_p}, \Omega^1_{A'/\mathbb{Z}_p}) \xrightarrow{\sim} H^0(A_{/\mathbb{Z}_p}, \Omega^1_{A/\mathbb{Z}_p}).$$

Proof. Since β is étale at p, $\beta_{/\mathbb{Z}_p}$ is smooth and $\Omega^1_{A/\mathbb{Z}_p/A'_{/\mathbb{Z}_p}}=0$. So the exact sequence in Lemma 3.3 gives $\beta^*\Omega^1_{A'/\mathbb{Z}_p}\cong\Omega^1_{A/\mathbb{Z}_p}$. Hence $H^0(A'_{/\mathbb{Z}_p},\Omega^1_{A'/\mathbb{Z}_p})\cong H^0(A_{/\mathbb{Z}_p},\beta^*\Omega^1_{A'/\mathbb{Z}_p})\cong H^0(A_{/\mathbb{Z}_p},\Omega^1_{A/\mathbb{Z}_p})$.

We can now prove Theorem 0.2. As remarked above, it suffices to show that there is a modular parametrization $\pi: X_1(N) \to A$ such that $c(\pi)$ is a p-unit. We show that a modular parametrization $\pi: X_1(N) \to A$ of minimal degree meets this requirement. By the definition of optimality, there is a \mathbb{Q} -isogeny $\beta: A_1 \to A$

such that $\pi = \beta \circ \pi_1$. We have $\deg \pi = \deg \beta \deg \pi_1$. It follows that $\deg \beta$ is minimal among all isogenies from A_1 to A. Thus β must be cyclic. Let ω_{A_1} and ω_A be Néron differentials on A_1 and A respectively, and let $c(\beta) \in \mathbb{Z}$ be such that $\beta^*\omega_A = c(\beta)\omega_{A_1}$. If $p \nmid \deg \beta$, then $p \nmid c(\beta)$. If $p|\deg \beta$, then β is étale at p by Theorem 0.3, and so $p \nmid c(\beta)$ by Corollary 3.4. Since $c(\pi) = c(\beta)c(\pi_1)$ and $c(\pi_1)$ is a p-unit by Prop. 3.2, $c(\pi)$ is a p-unit. This completes the proof of Theorem 0.2.

References

- S. Bosch, W. Lütkebohmert and M. Raynaud, Néron Models, Ergeb. der Math. und ihrer Grenzgeb., 3. Folge, Bd. 21, Springer-Verlag, Berlin, 1990. MR 91i:14034
- H. Carayol, Sur les représentations l-adiques associées aux formes modulaires de Hilbert, Ann. Sci. Éc. Norm. Sup., IV Sér. 19 (1986), 409-468. MR 89c:10083
- P. Cartier, Une nouvelle opération sur les formes differentielles, C. R. Acad. Sc. Paris 244 (1957), 426-428. MR 18:870b
- J. Coates and C.-G. Schmidt, Iwasawa theory for the symmetric square of an elliptic curve,
 J. Reine Angew. Math. 375 (1987), 104-156. MR 88i:11077
- P. Deligne and M. Rapoport, Les schémas de modules de courbes elliptiques, Lecture Notes in Math., vol 349, Springer-Verlag, Berlin, 1973, pp. 143-316. MR 49:2762
- H. Hida, On congruence divisors of cusp forms as factors of the special values of their zeta functions, Invent. Math. 64 (1981), 221-262. MR 83h:10066
- M.A. Kenku, On the number of Q-isomorphism classes of elliptic curves in each Q-isogeny class, J. Number Theory 15 (1982), 199-202. MR 84c:14036
- Y. Manin, Parabolic points and zeta functions of modular curves, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 19-65 (Russian); English transl. in Math. USSR-Izv. 6 (1972), 19-64. MR 47:3396
- B. Mazur and P. Swinnerton-Dyer, Arithmetic of Weil curves, Invent. Math. 25 (1974), 1-61. MR 50:7152
- B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 33-186. MR 80c:14015
- B. Mazur, Rational isogenies of prime degree, Invent. Math. 44 (1978), 129-162. MR 80h:14022
- B. Mazur, J. Tate and J. Teitelbaum, On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math. 84 (1986), 1-48. MR 87e:11076
- 13. D. Mumford, Abelian Varieties, Oxford Univ. Press, Oxford, 1970. MR 44:219
- K.A. Ribet, On modular representations of Gal(ℚ/ℚ) arising from modular forms, Invent. Math. 100 (1990), 431-476. MR 91g:11066
- J-P. Serre, Sur la topologie des variétés en caractérisque p, Symposium Internacional de Topología Algebraica, Universidad Nacional Autónoma de México, 1958, pp. 24-53. MR 20:4559
- J-P. Serre, Propriétés galoisiennes des points d'order fini des courbes elliptiques, Invent. Math. 15 (1972), 259-331. MR 52:8126
- G. Shimura, Reduction of algebraic varieties with respect to a discrete valuation ring of the basic field, Amer. J. Math. 77 (1955), 134-176. MR 16:616d
- G. Shimura, Introduction to the Arithemtic Theory of Automorphic Functions, Iwanami Shoten, Tokyo, and Princeton Univ. Press, Princeton, 1971. MR 47:3318
- G. Shimura, The special values of the zeta functions associated with Hilbert modular forms,
 Duke Math. J. 45 (1978), 637-679; 48 (1981), 697. MR 80a:10043; MR 82j:10051
- J.H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Math., vol. 106, Springer-Verlag, New York, Berlin and Heidelberg, 1986.
- G. Stevens, Arithmetic on Modular Curves, Progr. in Math., vol. 20, Birkhäuser, Basel, 1982.
 MR 87b:10050
- G. Stevens, The cuspidal group and special values of L-functions, Trans. Amer. Math. Soc. 291 (1985), 519-550. MR 87a:11056
- G. Stevens, Stickelberger elements and modular parametrizations of elliptic curves, Invent. Math. 98 (1989), 75-106. MR 90m:11089

- 24. A. Wiles, Modular curves and the class group of $\mathbb{Q}(\zeta_p)$, Invent. Math. **58** (1980), 1-35. MR **82j**:12009
- 25. A. Wiles, On p-adic representations for totally real fields, Ann. of Math. ${\bf 123}$ (1986), 407-456. MR ${\bf 87g}$:11142

Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada L8S $4\mathrm{K}1$

 $\it Current~address$: Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong